
Solving a Maze

Here is an algorithm for finding a path from the
entrance to the exit of a maze. This algorithm, like
many others, is based on the idea of a worklist
that holds individual steps towards the solution.
For our problem the worklist holds squares of the
maze that we know how to reach from the
entrance.

We'll actually code two solutions -- one where the
worklist is a stack an one were it is a queue. But
the algorithm is the same regardless of the
structure used for the worklist.

We will start the worklist with the entrance square
for the maze as its only entrance.

We will also use a marking system, marking squares
that have been completely explored. Each time we
remove a square from the worklist we mark it and
then add all of its unmarked neighbors to the
worklist. Note that it is possible to add a square to
the worklist that is already in the worklist, because
we don't mark a node until it is removed from the
list. We only need to explore a node once, so if we
take a marked square from the worklist we ignore
it.

We will also be adding path edges from nodes in
the worklist back to the nodes that put them
there. Eventually these path edges will form a
path from the goal back to the entrance. When
we reverse it this path will be our solution to the
maze.

Here is the algorithm:
• Start the worklist with the entrance square
• At each step:

• If the worklist is empty there is no solution
• If the worklist isn't empty take node p from it.
• If p is marked ignore it; take another square.
• Mark p.
• Let L be the list of p's unmarked neighbors.
• For each q in L:

• If q is the goal you found a path.
• Otherwise add q to the worklist with a path

edge from q back to p.

For example, consider the following maze, where
E indicates the entrance and G (for Goal) indicates
the exit:

0 1 2 3 4

0 E

1

2

3 G

Assuming that we use a stack for the worklist and
push children of a square on it in the order West,
South, East, North, we get the following
sequence of states for our worklist:

E = Entrance, G = Exit

(0, 2) (1, 2) (1, 3) (1, 4) (0, 4) (2, 4) (3, 4)EXIT
(2, 2) (2, 2) (2, 4) (2, 2) (2, 2)
(1, 1) (1, 1) (2, 2) (1, 1) (1, 1)

(1, 1)

0 1 2 3 4

0 E

1

2

3 G

Following the path edges we get the path from the
exit to the entrance:

(3, 4) (2, 4) (1, 4) (1, 3) (1, 2) (0, 2)

Reversing this gives a path from the entrance to the
exit, which is the solution to the maze that we seek.

Note that a solution to the maze is a path -- a
sequence of squares from the entrance to the exit
where each square is a neighbor of the previous
one. Our algorithm will generate such a path if
there is one, regardless of whether we use a stack
or a queue for the worklist. Changing the data
structure changes the order in which we add
nodes to the worklist, but either structure will
eventually get us a path if there is one.

Here is what you need to do for Lab 3:
a) Create a Square class to represent one

square of the maze, and a Maze class
that holds the maze as a 2D array. The
Square class needs to keep track of its
(row, column) position in the maze.
The lab document suggests using
Java's Point class for this. If you don't
like translating between Point's x and y
coordinates and your maze's rows and
columns, just use your own row and
column variables.

b) Implement Stack<E> using ArrayList<E> for
storage, and Queue<E> using a linked
structure. There is a StackADT interface and
a QueueADT interface to list the methods
you need. Test your implementations
carefully.

c) Create an abstract MazeSolver class that solves
the maze in terms of abstract methods for
interacting with the worklist. The key method
here is called step(). This performs one step of
the algorithm, taking one square from the
worklist, marking it, and adding its neighbors
to the worklist. There is also a method solve()
that calls step() until the exit is reached or the
worklist becomes empty.

d) MazeSolver is an abstract class. Create two
concrete subclasses MazeSolveStack and
MazeSolverQueue that instantiate the
abstract methods of MazeSolver. This is
quite easy; the real works comes in
MazeSolver.

Marking
There are several sets of markings that we use for
squares in the maze. Initially there are 4 types of
squares: Start, Exit, Empty and Wall. For the
empty squares there are several additional
markers: squares that are unexplored, or on the
worklist, or completely explored. Finally, when a
solution has been found we mark the squares that
are on the path from the start to the exit. The
Square class has a toString() method that needs to
change as the the square's status changes. You
also need to be able to tell easily the status of a

square. You can handle this any way you want, but
one relatively easy approach is to have a field kind
that has different values for Wall and Empty, and a
field marker that has different values for
Unexplored, OnWorklist, and Explored. The mark
for being on the final path only needs to be
applied in the toString() method -- by the time
you know a square is on the final path you are no
longer running the algorithm that looks for a
soluton.

